

Oracle GoldenGate Parallel
Replication Internals

Adam Leszczyński

POUG 2018, Sopot
07.09.2018

 207.09.2018 POUG 2018, Sopot: “Oracle GoldenGate Parallel Replication Internals”, © 2018 by Adam Leszczyński, all rights reserved

Questions for today
● How does OGG makes sure that:

– There are no duplicate transactions?
– None of the transactions are missed?
– … event in case of hardware failure?
– … how is this data managed when the replication uses parallel processing?
– Is this technical data available to the user?

● What is the order of the transactions that are replicated using Parallel Replication?
– Can this order be changed? What drives it?
– What about transaction dependencies?
– Is the order of COMMIT operations always preserved in the target database?
– How different Replicat options affect the order of replicated transactions?

● What does mean: eager apply, serialized, dependent, dependent eager, commit serialization and how do all
apply options for Replicat influence the behavior or parallel replication?

 307.09.2018 POUG 2018, Sopot: “Oracle GoldenGate Parallel Replication Internals”, © 2018 by Adam Leszczyński, all rights reserved

Disclaimer
● Don’t believe a single word you see here – Check everything by yourself!
● Always first read the documentation and MOS docs
● Results presented in this presentation are based on own research done

using the following software versions:
– Database: 12.1 + PSU 12.1.0.2.180717, 12.2 + RU 12.2.0.1.180717
– OGG: 12.2.0.2.2, 12.3.0.1.4

● Important note: This presentation contains some simplifications for
educational purposes

● Do not make any business decisions based on this presentation!

 407.09.2018 POUG 2018, Sopot: “Oracle GoldenGate Parallel Replication Internals”, © 2018 by Adam Leszczyński, all rights reserved

A few words about me
● Independent consultant
● Oracle GoldenGate 10, 11g, 12c Certified Implementation Specialist
● Oracle Database 12c OCA/OCP, SQL Expert
● First programming environment: GW-BASIC (MS DOS 3.3)
● Started with Oracle 8.0.3 and PL/SQL
● Worked for many years with Sybase/SAP ASE, Replication Server
● Internet:

– bersler.com
– github.com/bersler
– twitter.com/bersler
– stackoverflow.com/users/8217702

 507.09.2018 POUG 2018, Sopot: “Oracle GoldenGate Parallel Replication Internals”, © 2018 by Adam Leszczyński, all rights reserved

Quick introduction to OGG
Source Database

(redo log)
Extract Process

(memory)
Trail file Target Database (applied

using a single apply session)
T1 insert

T2 update
T3 delete
T1 commit
T2 update
T2 update
T4 delete

T3 rollback
T4 insert

T4 commit
T5 insert

T5 rollback
T2 insert

T2 commit

T1 insert

T2 update

T3 delete

T1 commit

T2 update
T2 update

T4 delete
T3 rollback

T4 insert
T4 commit

T5 insert
T5 rollback

T2 insert
T2 commit

T1 insert

T2 update

T1 commit

T2 update
T2 update

T4 delete
T4 insert

T4 commit

T2 insert
T2 commit

T1 insert

T2 update

T1 commit

T2 update
T2 update

T4 delete
T4 insert

T4 commit

T2 insert
T2 commit

 607.09.2018 POUG 2018, Sopot: “Oracle GoldenGate Parallel Replication Internals”, © 2018 by Adam Leszczyński, all rights reserved

Crucial points
● Transactions that are committed are written to the trail file

– The order of commits in the redo log determines the order of transactions
– Transactions start time, time span, interleaving is irrelevant for purpose of replication
– Transactions that are rolled back are ignored
– Changes to tables that are not to be replicated are ignored

● The transaction it is not written to the trail until it is committed
– The trail does not contain transactions that might be rolled back
– After successful commit (redo is written to disk) the transaction may be processed further

● The result of the Extract process is actually fully deterministic
– You can delete the trail files and restart Extract process and you would receive the same result –

the same DMLs, same CSNs, same commit order (not counting the metadata)

 707.09.2018 POUG 2018, Sopot: “Oracle GoldenGate Parallel Replication Internals”, © 2018 by Adam Leszczyński, all rights reserved

Not talking today about
● Supplemental logging

– It has to be configured prior to the start of replication
– Let’s assume that the redo logs contain all necessary information (PK, FK, UI, etc.)

● Trail file format
– Proper parameters are being used to make sure that the trail files contains all important information (before/after row images)

● Table metadata
– The schema does not change during the replication
– All schema metadata is added to the trail (OGG 12.2+)

● Performance parameters
– Like number of threads, monitoring details, tuning, etc. – there are a lot of MOS notes describing those

● We have enough archived redo logs and old trail files for our purposes
– Not talking today about how to secure them, when are they allowed to delete

● Transaction splitting used by Parallel Replicat

 807.09.2018 POUG 2018, Sopot: “Oracle GoldenGate Parallel Replication Internals”, © 2018 by Adam Leszczyński, all rights reserved

Checkpoint table
● How to confirm if the transaction is applied to the target database?
● There is no way to transactionally write confirmation to an OGG file and to the database

– There is a risk that one write will succeed and the other not
– There is a risk of missed or duplicated transaction
– Cheating (HANDLECOLLISIONS parameter) does not work in the long run

● The only real solid solution is a checkpoint table
– An additional technical table in the schema of the target database
– Checkpoint row UPDATE DML is added to every replicated transaction
– If the replicated transaction fails the checkpoint table won’t be updated
– For serial replication (parallellism = 1) the table has one row with the SCN of last transaction
– Works also with transaction grouping

● Not using CHECKPOINT TABLE is only allowed with Classic Replicat (OGG 12.3)

 907.09.2018 POUG 2018, Sopot: “Oracle GoldenGate Parallel Replication Internals”, © 2018 by Adam Leszczyński, all rights reserved

Checkpoint table example
Source Database

(redo log)
Target Database (applied

using a single apply session)
T1 insert

T2 update
T3 delete
T1 commit
T2 update
T2 update
T4 delete

T3 rollback
T4 insert

T4 commit
T5 insert

T5 rollback
T2 insert

T2 commit

T1 insert

T2 update

CHK 103

T2 update
T2 update

T4 delete
T4 insert

T4 commit

T2 insert
CHK 113

SCN 100
SCN 101
SCN 102
SCN 103
SCN 104
SCN 105
SCN 106
SCN 107
SCN 108
SCN 109
SCN 110
SCN 111
SCN 112
SCN 113

T1 commit

T2 commit

CHK 109

UPDATE CHECKPOINT_TABLE
SET LAST_APPLIED_SCN = 103

 1007.09.2018 POUG 2018, Sopot: “Oracle GoldenGate Parallel Replication Internals”, © 2018 by Adam Leszczyński, all rights reserved

Asynchronous commit
● When you have a checkpoint table in the target database:

– You do not need to make synchronous commit operations
– If the target database is restarted we do know what is committed and what not thanks to the checkpoint table
– The transactions can be reapplied after the database restart/recovery
– No single transaction would be lost

● Till OGG 11.1.1 the solution was to use
– SQLEXEC "alter session set commit_wait = 'NOWAIT'";
– Note: requires Oracle 10g R2

● Since OGG 11.1.1.1 (Oct 2011) it is no longer required
– The Asynchronous Commit is on by default
– New default parameter: DISABLECOMMITNOWAIT (default off)
– Still many people did not notice that and still use the OGG 11.1.1 old approach

 1107.09.2018 POUG 2018, Sopot: “Oracle GoldenGate Parallel Replication Internals”, © 2018 by Adam Leszczyński, all rights reserved

Serial apply is slow
● Serial apply = applied using 1 apply session
● Source database: there are multiple connections and multiple simultaneous transactions
● Every transactions takes some time:

– CPU time: changes in the database (tables, indexes, undo, redo logs, etc)
– Wait time: disk read, commit sync, network time, etc.

● Serialization (executing all of them serially one by one) of all transactions serializes also
all operations and takes time:
– CPU time: for changes in the database,
– Wait time: not all data is in cache,

● Serial apply does not scale

 1207.09.2018 POUG 2018, Sopot: “Oracle GoldenGate Parallel Replication Internals”, © 2018 by Adam Leszczyński, all rights reserved

Scaling replication
● Multi-threaded Extract
● Multiple Extract processes
● Multiple Replicat processes

– Coordinated Replicat
– FILTER, @RANGE clauses

● Non-serial Replicat
– Integrated Replicat
– Parallel Nonintegrated Replicat
– Parallel Integrated Replicat

Boring subject, this is not a transactional approach

Boring subject, nothing interesting here

Cool stuff

 1307.09.2018 POUG 2018, Sopot: “Oracle GoldenGate Parallel Replication Internals”, © 2018 by Adam Leszczyński, all rights reserved

Introducing parallelism to Replicat
OGG

Single stream
of LCRs

Multiple streams
of SQLs

Single stream
of transactions

Single stream
of transactions

Introducing parallelism to Replicat

Integrated
Replicat

Parallel
Nonintegrated

Replicat

Target Database Instance

Streams
inherited

processes

Multiple
apply

sessions

Multiple
apply

sessions

Multiple streams
of LCRs

Single stream
of transactions Parallel

Integrated
Replicat

Multiple apply sessions
performed by Streams

inherited processes

 1407.09.2018 POUG 2018, Sopot: “Oracle GoldenGate Parallel Replication Internals”, © 2018 by Adam Leszczyński, all rights reserved

Non-serial Replicat
Function

Integrated
Replicat

 Parallel
Nonintegrated

Replicat

Parallel
Integrated
Replicat

Dividing stream of transactions into
multiple apply sessions

Database OGG OGG

Transaction format LCR SQL LCR

Supported databases Oracle
Oracle + non Oracle

(future versions) Oracle

Checkpoint table schema SYS User defined User defined

OGG min. version 12.1 12.3 12.3

Target database min. version 11.2.0.4+ 11.2.0.4+ 12.2.0.1+

 1507.09.2018 POUG 2018, Sopot: “Oracle GoldenGate Parallel Replication Internals”, © 2018 by Adam Leszczyński, all rights reserved

Transaction grouping
● Does not change the order of DMLs, just

reduces the number of commit operations
● Integrated Replicat:

– Controlled by parameter GROUPTRANSOPS
– Default set to 1
– Parallelism off (DBOPTIONS

INTEGRATEDPARAMS (PARALLELISM 1) sets the
value to 50 (when BATCHSQL is not used)

● Parallel Replicat
– Controlled automatically
– Probably somehow grouped automatic up to the

value of LOOK_AHEAD_TRANSACTIONS (values:
1000 – 100 000, default 10 000)

– Works with BATCHSQL
– Can’t turn it off

T1 insert

T2 update
T2 update
T2 update

T4 delete
T4 insert

T2 insert
T2 commit

T1 insert

T2 update

T1 commit

T2 update
T2 update

T4 delete
T4 insert

T4 commit

T2 insert
T2 commit

 1607.09.2018 POUG 2018, Sopot: “Oracle GoldenGate Parallel Replication Internals”, © 2018 by Adam Leszczyński, all rights reserved

Transaction batching
● Can be turned on by parameter: BATCHSQL

– By default off

● Rearranges the DML order within transactions
to achieve higher performance

● Primary developed for Classic Repicat, works
with other Replicat types but Oracle
discourages to use it

● Integrated Replicat:
– Sets GROUPTRANSOPS to 1 (grouping disabled)

● Parallel Nonintegrated Replicat:
– Works with on transaction grouping (automatic)

● Parallel Integrated Replicat
– Nondeterministic behavior (?) – not sure if it is on

or off

Delete A

Delete B

Update B

Update B
Insert A

Insert A
Insert B
Insert A

Update A
Commit

Insert A

Insert B

Insert A

Update B
Update B

Insert A
Update A
Delete A

Delete B
Commit

 1707.09.2018 POUG 2018, Sopot: “Oracle GoldenGate Parallel Replication Internals”, © 2018 by Adam Leszczyński, all rights reserved

CHK (low: 99, high: 99)

Checkpoint table – “parallel style”
Source Database

(redo log)
Target Database

T1 insert
T1 commit
T2 delete
T2 commit
T3 update
T3 commit
T4 delete
T4 commit
T5 insert

T5 commit
T6 delete
T6 commit
T7 insert

T7 commit

Tx 10.1.22
Tx 10.1.22
Tx 11.2.1
Tx 11.2.1

Tx 10.2.12
Tx 10.2.12
Tx 12.2.2
Tx 12.2.2
Tx 11.3.5
Tx 11.3.5
Tx 11.2.1
Tx 11.2.1
Tx 10.9.1
Tx 10.9.1

SCN 100
SCN 101
SCN 102
SCN 103
SCN 104
SCN 105
SCN 106
SCN 107
SCN 108
SCN 109
SCN 110
SCN 111
SCN 112
SCN 113

T1 insert
Insert CHKA (10.1.22)

T3 update
Insert CHKA (10.2.12)

T5 insert

Insert CHKA (11.3.5)

T2 delete
Insert CHKA (11.2.1)

T4 delete
Insert CHKA (12.2.2)

T6 delete
Insert CHKA (11.2.1)

T7 insert

UPDATE CHK SET low=99, high=107
commit

T1 commitT2 commit

T3 commit T4 commit

UPDATE CHK SET low=107, high=113
commit

Truncate table CHKA

T5/T7 commit

T6 commitInsert CHKA (10.9.1)

UPDATE CHK SET low=113, high=113
commit

Truncate table CHKA

 1807.09.2018 POUG 2018, Sopot: “Oracle GoldenGate Parallel Replication Internals”, © 2018 by Adam Leszczyński, all rights reserved

Checkpoint table – “parallel style”
● Multiple checkpoint tables are required:

– One general with high/low watermark of applied SCN
– One/Many with csn/transaction id’s of applied transactions

● Integrated Replicat: One table
● Parallel Replicat: Many tables

● This generates additional load for every transaction:
– Integrated Replicat: +1 additional INSERT per transaction, +1 additional DELETE per transaction
– Parallel Replicat: +1 additional INSERT per transaction, from time to time: TRUNCATE
– For non-parallel Replicat (like Classic Replicat) there could be just on update per transaction group

● The high/low watermark is updated from time to time
● For Integrated Replicat (not Parallel Integrated Replicat!) the checkpoint tables reside in SYS

schema

 1907.09.2018 POUG 2018, Sopot: “Oracle GoldenGate Parallel Replication Internals”, © 2018 by Adam Leszczyński, all rights reserved

Transaction dependencies
● Example:

CREATE TABLE (
 A NUMERIC PRIMARY KEY,
 B NUMERIC);

INSERT INTO A VALUES (1,1);

COMMIT;

UPDATE A SET B = 2 WHERE A = 1;

COMMIT;

UPDATE A SET B = 3 WHERE A = 1;

COMMIT;

● Integrated/Parallel Replicat:
– OGG identifies transaction dependencies based on analysis of rows that are modified (knowing what are the constraints)
– The dependency information is taken into account when the transactions are scheduled – for any identified transaction

dependency the order of COMMITs and dependent DMLs may not change

All 3 transactions are accessing
the same row. This implies that

those 3 transactions are
dependent

 2007.09.2018 POUG 2018, Sopot: “Oracle GoldenGate Parallel Replication Internals”, © 2018 by Adam Leszczyński, all rights reserved

Transaction dependencies
● Primary Key dependency

– All DMLs which are changing a certain row have to be executed in the same order

● Unique Index dependency
– Like for PK

● Foreign Key dependency
– All DMLs which are changing a row that might be referenced have to be executed in the same order

● Dependency calculation requires that certain constraints exists in the source or target database
– There is no other way to tell OGG that there are constraints to be respected
– The target database can not have constraints that do no exists in the source database
– “Conditional” supplemental logging are required for UI and FK constraints

● Always honored by: Integrated Replicat & Parallel Replicat
● Note: the constraints do not have to be DEFFERABLE on the target – OGG can defer them anyway

 2107.09.2018 POUG 2018, Sopot: “Oracle GoldenGate Parallel Replication Internals”, © 2018 by Adam Leszczyński, all rights reserved

Preserving COMMIT order

T1 insert A

T3 update E

T1 commit

T3 update G
T3 update C

T2 insert B
T2 delete B
T2 commit

T3 delete C
T3 commit
T4 insert D
T4 insert F
T4 commit

T1 insert A

T1 commit

T2 insert B
T2 delete B

T2 commit

T3 update E
T3 update G
T3 update C
T3 delete C

T3 commit

T4 insert D
T4 insert F

T4 commit

Transactions may by started earlier (eagerly)
but the COMMIT order is preserved

T
im

e

In this example there
is no dependency

between the
transactions

Let’s assume that
this INSERT

operation takes
very long to

execute

Transactions are executed in target database with 4 apply sessions

 2207.09.2018 POUG 2018, Sopot: “Oracle GoldenGate Parallel Replication Internals”, © 2018 by Adam Leszczyński, all rights reserved

Eager start of non-dependent
transactions

T1 insert A

T3 update E

T1 commit

T3 update A
T3 update C

T2 insert B
T2 delete B
T2 commit

T3 delete C
T3 commit
T4 insert D
T4 insert F
T4 commit

T
ra

n
sa

ct
io

n
 d

e
p

e
n

d
e

n
cy

:
T

h
is

 is
 t

h
e

 s
a

m
e

 r
o

w T1 insert A

T1 commit

T2 insert B
T2 delete B
T2 commit

T3 update E
T3 update A
T3 update C
T3 delete C
T3 commit

T4 insert D
T4 insert F
T4 commit

Transactions that have no dependency
can be started earlier (eagerly)

T
im

e
T3 transaction has one dependency (row A)and this suspendsthe whole transactionfrom being executed untilT1 has been committed

T2 and T4 operate
on different set of
rows and have no

transaction
dependency

Transactions are executed in target database with 4 apply sessions

 2307.09.2018 POUG 2018, Sopot: “Oracle GoldenGate Parallel Replication Internals”, © 2018 by Adam Leszczyński, all rights reserved

Eager start of all transactions

T1 insert A

T3 update E

T1 commit

T3 update A
T3 update C

T2 insert B
T2 delete B
T2 commit

T3 delete C
T3 commit
T4 insert D
T4 insert F
T4 commit

T
ra

n
sa

ct
io

n
 d

e
p

e
n

d
e

n
cy

:
T

h
is

 is
 t

h
e

 s
a

m
e

 r
o

w
` T1 insert A

T1 commit

T2 insert B
T2 delete B
T2 commit

T3 update E

T3 update A
T3 update C
T3 delete C
T3 commit

T4 insert D
T4 insert F
T4 commit

Transactions that have dependency can be started
earlier (eagerly) and can be executed partially

T
im

e
T3 transaction has one dependency (row A)but the first DML (update of E) can be executed before T1has been committed

T2 and T4 operate
on different set of
rows and have no

transaction
dependency

Transactions are executed in target database with 4 apply sessions

 2407.09.2018 POUG 2018, Sopot: “Oracle GoldenGate Parallel Replication Internals”, © 2018 by Adam Leszczyński, all rights reserved

Modes of operation
Mode

Preserved
commit
order

Eager start of
non-dependent

transactions

Eager start of
dependent

transactions

Integrated
Replicat

 Parallel
Nonintegrated

Replicat

Parallel
Integrated
Replicat

Parallelism
Off

YES Available Available Available

Serialized
Transactions YES YES YES Available

Dependent
(Default)

YES Available Available Available

Dependent
Eager YES YES Available

 2507.09.2018 POUG 2018, Sopot: “Oracle GoldenGate Parallel Replication Internals”, © 2018 by Adam Leszczyński, all rights reserved

Parallelism Off

T1 insert A

T3 update E

T1 commit

T3 update A
T3 update C

T2 insert B
T2 delete B
T2 commit

T3 delete C
T3 commit
T4 insert D
T4 insert F
T4 commit

T1 insert A
T1 commit

T2 insert B
T2 delete B
T2 commit

T3 update E
T3 update A
T3 update C
T3 delete C
T3 commit

T4 insert D
T4 insert F
T4 commit

T
im

e

T
ra

n
sa

ct
io

n
 d

e
p

e
n

d
e

n
cy

:
T

h
is

 is
 t

h
e

 s
a

m
e

 r
o

w

Transactions are executed in target database with 4 apply sessions

 2607.09.2018 POUG 2018, Sopot: “Oracle GoldenGate Parallel Replication Internals”, © 2018 by Adam Leszczyński, all rights reserved

Parallelism Off
● Offers maximum safety – works like Classic Replicat

– Does not start a following transaction before committing the current transaction
– Always using the “parallel style” checkpoint table – Even when working with just 1 apply session
– Used for “large transactions”

● Integrated Replicat:
– DBOPTIONS INTEGRATEDPARAMS (PARALLELISM 1)
– Automatically sets: GROUPTRANSOPS 25

● Parallel Nonintegrated Replicat:
– APPLY_PARALLELISM 1
– or: COMMIT_SERIALIZATION

● Parallel Integrated Replicat:
– APPLY_PARALLELISM 1

 2707.09.2018 POUG 2018, Sopot: “Oracle GoldenGate Parallel Replication Internals”, © 2018 by Adam Leszczyński, all rights reserved

Serialized Transactions

T1 insert A

T3 update E

T1 commit

T3 update A
T3 update C

T2 insert B
T2 delete B
T2 commit

T3 delete C
T3 commit
T4 insert D
T4 insert F
T4 commit

T1 insert A

T1 commit

T2 insert B
T2 delete B

T2 commit

T3 update E

T3 update A
T3 update C
T3 delete C
T3 commit

T4 insert D
T4 insert F

T4 commit

Transactions are executed in target database with 4 apply sessions

T
im

e

T
ra

n
sa

ct
io

n
 d

e
p

e
n

d
e

n
cy

:
T

h
is

 is
 t

h
e

 s
a

m
e

 r
o

w

 2807.09.2018 POUG 2018, Sopot: “Oracle GoldenGate Parallel Replication Internals”, © 2018 by Adam Leszczyński, all rights reserved

Serialized Transactions
● Start a following transaction before the previous is committed

– COMMIT order is preserved
– Transaction dependency is preserved
– No risk of changing the transaction order – in case of fault the transactions can be retried using 1 apply session
– Note: “Parallelism Off” parameters can not be used

● Integrated Replicat:
– DBOPTIONS INTEGRATEDPARAMS (COMMIT_SERIALIZATION FULL)
– Note: DBOPTIONS INTEGRATEDPARAMS (BATCHSQL_MODE SEQUENTIAL) it will trigger Dependent Eager mode
– Note: Unpredictable behavior when BATCHSQL is used (COMMIT order might not be preserved)

● Parallel Nonintegrated Replicat:
– Not available
– Note: There is option COMMIT_SERIALIZATION but works like parallelism is off

● Parallel Integrated Replicat
– Not available

 2907.09.2018 POUG 2018, Sopot: “Oracle GoldenGate Parallel Replication Internals”, © 2018 by Adam Leszczyński, all rights reserved

Dependent (Default)

T1 insert A

T3 update E

T1 commit

T3 update A
T3 update C

T2 insert B
T2 delete B
T2 commit

T3 delete C
T3 commit
T4 insert D
T4 insert F
T4 commit

T1 insert A

T1 commit

T2 insert B
T2 delete B
T2 commit

T3 update E
T3 update A
T3 update C
T3 delete C
T3 commit

T4 insert D
T4 insert F
T4 commit

T
im

e

T
ra

n
sa

ct
io

n
 d

e
p

e
n

d
e

n
cy

:
T

h
is

 is
 t

h
e

 s
a

m
e

 r
o

w

Transactions are executed in target database with 4 apply sessions

 3007.09.2018 POUG 2018, Sopot: “Oracle GoldenGate Parallel Replication Internals”, © 2018 by Adam Leszczyński, all rights reserved

Dependent (Default)
● The default mode – transaction dependencies are honored

– COMMIT order is NOT preserved
– Transaction dependency is preserved
– Does NOT “eagerly” starts dependent transactions
– Note: “Parallelism Off” parameters can not be used

● Integrated Replicat
– Default parameter: DBOPTIONS INTEGRATEDPARAMS (BATCHSQL_MODE DEPENDENT)
– Default parameter: DBOPTIONS INTEGRATEDPARAMS (COMMIT_SERIALIZATION DEPENDENT_TRANSACTIONS)
– Note: Works with BATCHSQL

● Parallel Nonintegrated Replicat
– Note: Works with BATCHSQL

● Parallel Integrated Replicat
– The only mode available

 3107.09.2018 POUG 2018, Sopot: “Oracle GoldenGate Parallel Replication Internals”, © 2018 by Adam Leszczyński, all rights reserved

Dependent Eager

T1 insert A

T3 update E

T1 commit

T3 update A
T3 update C

T2 insert B
T2 delete B
T2 commit

T3 delete C
T3 commit
T4 insert D
T4 insert F
T4 commit

T1 insert A

T1 commit

T2 insert B
T2 delete B
T2 commit

T3 update E

T3 update A
T3 update C
T3 delete C
T3 commit

T4 insert D
T4 insert F
T4 commit

T
im

e

T
ra

n
sa

ct
io

n
 d

e
p

e
n

d
e

n
cy

:
T

h
is

 is
 t

h
e

 s
a

m
e

 r
o

w

Transactions are executed in target database with 4 apply sessions

 3207.09.2018 POUG 2018, Sopot: “Oracle GoldenGate Parallel Replication Internals”, © 2018 by Adam Leszczyński, all rights reserved

Dependent Eager
● The fastest mode possible – offers the highest possible level of parallelism

– COMMIT order is NOT preserved
– Transaction dependency is preserved
– Starts “eagerly” dependent transactions
– Note: “Parallelism Off” parameters can not be used

● Integrated Replicat:
– DBOPTIONS INTEGRATEDPARAMS (BATCHSQL_MODE DEPENDENT_EAGER)
– Or: DBOPTIONS INTEGRATEDPARAMS (BATCHSQL_MODE SEQUENTIAL)
– Note: Works with BATCHSQL

● Parallel Nonintegrated Replicat
– Not available

● Parallel Integrated Replicat
– Not available

 3307.09.2018 POUG 2018, Sopot: “Oracle GoldenGate Parallel Replication Internals”, © 2018 by Adam Leszczyński, all rights reserved

Modes of operation (again)
Mode

Preserved
commit
order

Eager start of
non-dependent

transactions

Eager start of
dependent

transactions

Integrated
Replicat

 Parallel
Nonintegrated

Replicat

Parallel
Integrated
Replicat

Parallelism
Off

YES Available Available Available

Serialized
Transactions YES YES YES Available

Dependent
(Default)

YES Available Available Available

Dependent
Eager YES YES Available

 3407.09.2018 POUG 2018, Sopot: “Oracle GoldenGate Parallel Replication Internals”, © 2018 by Adam Leszczyński, all rights reserved

Large transactions

T1 insert A

T3 update E

T1 commit

T3 update A
T3 update C

T2 insert B
T2 delete B
T2 commit

T3 delete C
T3 commit
T4 insert D
T4 insert F
T4 commit

T1 insert A
T1 commit

T2 insert B
T2 delete B
T2 commit

T3 update E
T3 update A
T3 update C
T3 delete C
T3 commit

T4 insert D
T4 insert F
T4 commit

T
im

e

T
h

is
 t

ra
n

sa
ct

io
n

 e
xe

e
d

s
th

e

la
rg

e
 t

ra
n

sa
ct

io
n

 s
iz

e
 t

h
re

sh
o

ld

T0 insert G
T0 commit

T0 insert G
T0 commit

Large transaction arrives,
all parallel activity is

 suspended and all previous
Transactions must be

committed

Large transaction
Completed, parallel

activity can be
resumed

For Integated
Replicat dependency

waits are visible
in the Database

T5 insert G
T5 commit

T5 insert G
T5 commit

Wait Wait

Transactions are executed in target database with 3 apply sessions

 3507.09.2018 POUG 2018, Sopot: “Oracle GoldenGate Parallel Replication Internals”, © 2018 by Adam Leszczyński, all rights reserved

Large transactions
● When a large transaction arrives

– For Integrated Replicat: number of LCRs > EAGER_SIZE (default: 15 100 LCRs)
● Warning: Setting the value high requires a lot of memory (STREAMS_POOL_SIZE)

– For Parallel Replicat: size > CHUNK_SIZE (default: 1 000 000 000 bytes)

● Action:
– All preceding transactions have to be committed
– None following transaction can start until the large transaction has been committed

● Large transactions are executed serially (with parallelism turned off)
– Even if there are no dependencies
– Eager start of transactions (dependent and not-dependent) is not used

 3607.09.2018 POUG 2018, Sopot: “Oracle GoldenGate Parallel Replication Internals”, © 2018 by Adam Leszczyński, all rights reserved

Summary
● If you don’t need transactional consistence in replication use a non-transactional approach like Coordinated

Replicat (lower checkpoint table overhead)
● If you don’t know your application – the only safe modes are: Parallelism Off mode and Serialized Transactions
● Start using Parallel Replicat instead of Integrated Replicat?

– Oracle claims it to be up to 5x faster
– Advantages:

● Removed load from database host (cost of licenses $)
● Handles much bigger transactions in parallel mode (1GB vs 15100 LCRs)
● Better checkpoint table handling (user schema, uses truncate operations)
● BATCHSQL works together with GROUPTRANSOPS (Parallel Noninegrated Replicat)
● Big transactions splitting option (SPLIT_TRANS_RECS)
● Patching OGG might not require database patching (Classic Parallel Replicat)

– Disadvantages:
● New functionality available for only for one year – might require more testing before using in production
● Doesn’t have Serialized Transactions and Dependent Eager modes yet (OGG 12.3)

 3707.09.2018 POUG 2018, Sopot: “Oracle GoldenGate Parallel Replication Internals”, © 2018 by Adam Leszczyński, all rights reserved

Appendix 1: unexpected features
● Integrated Replicat: DBOPTIONS INTEGRATEDPARAMS (BATCHSQL_MODE SEQUENTIAL)

works the same as DBOPTIONS INTEGRATEDPARAMS (BATCHSQL_MODE
DEPENDENT_EAGER) when BATCHSQL is not used

● Integrated Replicat: BATCHSQL + DBOPTIONS INTEGRATEDPARAMS
(COMMIT_SERIALIZATION FULL) – the order of transaction batches is not preserved

● Parallel Integrated Replicat: rearranges commands in transactions (some hybrid mode of
BATCHSQL which is always on – might swap INSERT and UPDATE’s)
– Happens in all possible configurations, can’t turn off this feature (SR 3-18049467561)

● Parallel Nonintegrated Replicat: option COMMIT_SERIALIZATION is actually turning on serial mode
● Parallel Integrated Replicat accepts Integrated Replicat parameters like: DBOPTIONS

INTEGRATEDPARAMS (COMMIT_SERIALIZATION xx) or DBOPTIONS INTEGRATEDPARAMS
(BATCHSQL_MODE xx) but have no effect

 3807.09.2018 POUG 2018, Sopot: “Oracle GoldenGate Parallel Replication Internals”, © 2018 by Adam Leszczyński, all rights reserved

Appendix 2: Investigated options
Option

Integrated
Replicat

Parallel
Nonintegrated

Replicat

Parallel
Integrated
Replicat

Notes

DBOPTIONS INTEGRATEDPARAMS (COMMIT_SERIALIZATION FULL |
DEPENDENT_TRANSACTIONS) VALID - VALID (?)

Probably those options should not be possible to be used
by Parallel Integrated ReplicatDBOPTIONS INTEGRATEDPARAMS (BATCHSQL_MODE DEPENDENT

| DEPENDENT_EAGER | SEQUENTIAL) VALID - VALID (?)

DBOPTIONS INTEGRATEDPARAMS (PARALLELISM xxx) VALID - -

DBOPTIONS INTEGRATEDPARAMS (EAGER_SIZE xxx) VALID - -

BATCHSQL VALID VALID VALID Works very strange on Parallel Integrated Replicat

GROUPTRANSOPS xxx VALID - -

SPLIT_TRANS_RECS xxx - VALID VALID Conflicts with COMMIT_SERIALIZATION

COMMIT_SERIALIZATION - VALID -
Conflicts with APPLY_PARALLELISM 1 and
SPLIT_TRANS_RECS

LOOK_AHEAD_TRANSACTIONS xxx - VALID VALID

CHUNK_SIZE xxx - VALID VALID

APPLY_PARALLELISM xxx - VALID VALID APPLY_PARALLELISM 1 conflicts with
COMMIT_SERIALIZATION

MAP_PARALLELISM xxx - VALID VALID

 3907.09.2018 POUG 2018, Sopot: “Oracle GoldenGate Parallel Replication Internals”, © 2018 by Adam Leszczyński, all rights reserved

That’s all, folks
● I encourage you ALL to test the options I have

presented on your environment and please do
send me feedback: aleszczynski@bersler.com

● Thank you very much for your attention :)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

